View Single Post
 
Old 05-10-2006, 03:55 PM
EricT EricT is offline
Rank: Heavyweight
 
Join Date: Jul 2005
Posts: 6,314
Default Common Weightlifting Injuries and Recommendations from Chiropractor

TYPES OF WEIGHT TRAINING INJURIES

Dr. Ben Weitz

A wide range of weight training injuries has been documented in the literature. These reports include a number of unusual injuries such as: subarachnoid aneurysmal hemorrhage (19); ruptures of the pectoralis major, (20) biceps,(21) triceps,(22) and quadriceps muscles (23); fracture of the dome of the talus(24); and Kienbock's syndrome (25) among others. This article will focus on some of the more common weight training injuries involving the lumbar spine, the cervical spine, the shoulder, and the knee.

The lower back is the site of greatest injury.(26-28) A number of reports point to the shoulder and the knee as the next most frequent sites of injury during weight training.(3,27-29) At least one epidemiologic study suggests a significant statistical link between weight training and cervical disc herniation.(30)

LUMBAR SPINE INJURIES

In both youths(26-29,31) and adults(32,33) the most common weight training injuries involve the lower back. The mechanisms of injury include hyperflexion, hyperextension, torsion, and overdevelopment and excessive tightening of the iliopsoas muscles. The most common back problems are mechanical sprains and strains; however, disc injury or spondylolisthesis may also occur. Spondylolisthesis may be due to the stress imposed at the neural arch while performing exercises that involve repetitive lumbar spine flexion and extension under load. It is particularly true of dead-lifts.(34)

The greatest number of weight training-related back injuries result from exercises in which the trainee is in the flexed posture, such as rows and dead-lifts. A bent barbell row is often performed standing with heavy weight held at arm's length while bent at the waist and the legs held straight. This position creates perhaps the greatest amount of contractile tension on the lumbar spine musculature and the greatest lumbar disc pressure.(35)

A frequent error is to allow the back to round and then to jerk the weight up using the hip muscles to generate power. Lumbar flexion while lifting results in the load being shifted from the back muscles to the posterior ligaments, the thoracolumbar fascia, and the lumbar discs. The lower back muscles stop contracting when the spine is sufficiently flexed, a phenomenon known as the flexion relaxation response of the erector spinae.(36) It may result in injury to ligaments or discs.

The seated cable row exercise may also result in a hyperflexion injury to the lumbar spine, a problem often encountered in this author's practice. The injury usually results from leaning forward at the starting point of each rep, allowing the spine to flex, in an effort to get a good stretch (see Figs 1 and 2).

Extremely heavy weights are sometimes used in weightlifting exercises. As much as 1,000 lb can be used in the squat and dead-lift. While steadily applied compressive forces alone rarely injure the disc, rupture of the vertebral end plate or fatigue microfractures of the trabeculae of the vertebral bodies may result.(37,38) Research(39) reveals that retired heavyweight lifters exhibit significantly greater reduction of disc height on X-ray compared with controls.

Hyperextension injury to the spine may result from arching backward while performing unsupported overhead presses,(32) moving into a hyperextended position while performing the back extension exercise ballistically, or while performing prone leg curls. During the leg curl, there is a strong tendency for the spine to be pulled into hyperextension as the psoas comes into play to assist the hamstrings. Hyperextension can cause abnormal loading of the facet joints and the capsules, resulting in an inflammatory response. It can also increase the load on a preexisting spondylolisthesis, resulting in greater strain to the supporting tissues. The solution is to contract the abdominals while pulling the hips against the bench in order to maintain a neutral lumbar positive. In addition, patients should be advised to avoid using too heavy a weight or overstraining at the end of a set.

Injury to either the facets or the discs may occur from rotational exercises such as twists or from the rotary torso machine. The lumbar spine is particularly vulnerable to torsional forces. Due to the sagittal orientation of the facets, only a limited amount of rotation can occur in the lumbar spine. Additional rotation may result in injury to the facets or shearing of the discs.(40,41) Research (42) suggests a link between twisting while lifting and an increased risk of disc herniation.

Twisting exercises are often performed in an attempt to isolate the transverse abdominus muscle and create a thinner waistline. However, the transverse abdominus does not contract while rotating the torso, and twisting exercises will not trim the waist. Despite its horizontal fiber orientation, the transverse abdominus functions mainly to compress the abdomen during functions such as forced expiration and defecation.(43,44)

Many commonly performed abdominal exercises may contribute to lower back injury through overdevelopment and tightening of the hip flexor, iliopsoas muscles. When the iliopsoas Muscle contracts, it exerts both increased compressive and shear forces on the lumbar spine.(45) Many abdominal exercises are actually exercises in which the hip flexor muscles rather than the abdominals perform much or all of the work. These exercises include full sit-ups, straight leg raises, high chair and hanging leg raises, crunches with the feet hooked under a sofa or an apparatus in the gym, V-ups, Roman Chair rocking crunches, and most abdominal machines. Hooking the feet under a stationary object for support increases the tendency for the hip flexors to be recruited during sit-ups.

CERVICAL SPINE INJURIES

While not as common as back injuries, neck injuries occur fairly frequently in weight lifters. Cervical spine problems include mechanical sprains and strains, disc injuries, and brachial plexus injuries. Soft tissue injuries may result from protruding the head forward or from unnecessarily tensing the neck while weight training. Some problems result from a muscle imbalance syndrome similar to the "upper crossed syndrome" described by Janda.(46) This problem occurs because of imbalance in training programs that involve an inordinate amount of exercise for the pectorals, the front delts, the lats, and the biceps and very little training of antagonist muscle groups. The result can be overly developed and tight pectoralis major and minor, latissimus dorsi, front deltoids, trapezium, biceps, and stemocleidomastoid muscles, especially if proper attention has not been given to maintaining flexibility in these muscle groups. It is often accompanied by relative weakness of the middle and lower trapezium, rhomboids, the upper thoracic extensors, the deep neck flexors, the rear delts, and the external shoulder rotators (the infraspinatus and the teres minor).(33) It results in the rounded shoulder, forward head posture frequently seen in bodybuilders.

Exercises in which the head is allowed to nod or protrude forward may contribute to cervical spine injury by either promoting the postural defect noted previously, or by predisposing the athlete to cervical disc problems. The tendency to jut the head forward in exercises such as shrugs (Figs 3 and 4), behind the neck presses (Fig 5), behind the neck pulldowns, lateral shoulder raises (Fig 6), triceps extensions, curls, incline leg presses, and abdominal crunches promotes the development of the rounded shoulder, forward head posture. This posture is associated with abnormal mechanical function of the cervical spine. It is characterized by adaptive shortening of the suboccipital muscles, the stemocleidomastoid and the anterior scalene muscles, and excessive tension and weakening of the long cervical extensor muscles, the levator scapulae and the scapular retractor muscles. Trigger points and/or muscle strain may result in any of these muscles. Either upper cervical or cervico-thoracic joint dysfunction may result. Not only do cervical pain syndromes occur, but also temporomandibular joint dysfunction and headache. (47,48)

Protraction (protrusion) of the head during exercises in which the neck muscles are under load has also been linked with an increased risk of cervical disc derangement (herniation).(49) The forward head posture results in anterior shearing and increased compression of the lower cervical discs as the head slides forward and the upper cervical spine becomes hyperextended. Forceful contraction of the trapezium, the sternocleidomastoid, and the other cervical muscles will increase the load on the cervical discs and the facets. This finding correlates with an epidemiologic study that found that weight training, particularly with free weights, was associated with an increased risk of cervical disc herniation.(30) Cailliet(5O) claims that this forward head posture also leads to accelerated degenerative changes in the cervical spine. He notes that each inch the head protrudes forward of the trunk results in the equivalent load of an extra head that the neck must support.

It should be noted that during the performance of some exercises, untrained lifters commonly not only protract the head but also tense and flex the neck forward during the performance of exercises. This action occurs most frequently with curls, lateral raises, and leg presses. This habit may be even more damaging than simply protruding the head. Beginning with the novice athlete, bench presses-both flat and incline-are commonly incorporated into weight training and may be involved in the cause of cervical spine injury. It is not clear whether the injury occurs from protrusion of the head as the bar is lowered or from forcibly hyperextending the neck (ie, driving the head backward into the bench) as the weight is pushed up.

Neck strengthening is a controversial topic. Little research has investigated the role of neck strengthening in injury prevention. Mobility of the cervical spine is important and may be emphasized to the exclusion of strengthening. Some experts(48) recommend that rehabilitative exercises be directed toward strengthening the scapular muscles with the cervical spine held in the neutral position. However, others(51,52) have achieved good results with direct neck strengthening exercises, especially those directed at the cervical extensors.

SHOULDER INJURIES

As a trade-off for mobility, the shoulder lacks some of the stability found in other joints.(53) The shoulder is under considerable stress during many commonly performed weight training exercises and, as a result, is frequently injured.(3,31,54,55) Shoulder pain is often taken for granted or ignored by many bodybuilders. For example, anterior shoulder pain felt secondary to performing bench presses (ie, achieving a "burn") is frequently assumed to be a sore anterior deltoid muscle from a hard workout. It may, in fact, represent a sign of rotator cuff strain or impingement.

Impingement syndrome and anterior instability are the most common types of shoulder conditions associated with weight training. It is important to recognize that these conditions often coexist.(54) Rotator cuff strain/tendinitis/tear, proximal biceps tendinitis, and subacromial bursitis frequently result from subacromial impingement. However, primary tendinitis resulting from overload may also occur. Less common types of shoulder injuries include brachial plexus neuropathy, suprascapular nerve impingement, posterior glenohumeral instability (due to heavy bench presses), acromio-clavicular joint sprains (AC), proximal biceps tendon tears, pectoralis major strains or tears, and osteolysis of the distal clavicle.

Impingement syndrome

Impingement syndrome refers to impingement of the rotator cuff tendons, especially the supraspinatus tendon, under the subacromial arch. The biceps tendon or the subacromial bursa may also be impinged under the subacromial arch. The position that appears to be most damaging is abduction with internal rotation. It is not clear whether rotator cuff muscle/ tendon overload precedes impingement or is caused by it.(53,56)

A major factor in shoulder impingement injuries in weight lifters is the muscle imbalance syndrome mentioned earlier, highlighted by overly tight shoulder internal rotators and weak shoulder external rotators.(53,57) A substantial portion of the typical training program is dedicated to training the pectorals and the lats. Both tend to produce internal rotation of the shoulders. The external shoulder rotators (the infraspinatus and the teres minor) are often neglected.

There is considerable stress imposed on the rotator cuff muscles during the performance of many exercises, such as the bench press. Too many sets of exercises for the same body part with excessive weight can result in fatigue and overload injury to the rotator cuff. Therefore, weight lifters should be encouraged to perform fewer sets and no more than 12 sets per body part, including warm-ups.

A common exercise is the lateral raise with the shoulder in internal rotation (Fig 6). The lifter is often instructed to point the thumb down as though pouring water from a pitcher in an effort to better isolate the side deltoid. It may be true, but there is a risk of accelerating or aggravating an impingement syndrome. The clinician should suggest that lateral raises be performed face down on an incline bench positioned at about 75 degrees up from the ground. This position will isolate the side delts without creating impingement (Fig 7).

Another common mistake is raising the arms above 90 degrees while performing side raises. Unless the thumb is pointing up, this position may increase the risk of impinging the rotator cuff tendons under the subacromial arch. Shoulder protraction is associated with narrowing of the subacromial space.(58) Allowing the shoulders to become protracted forward beyond the neutral position during the performance of exercises such as bench presses may increase the strain to this area.

Anterior instability of the glenohumeral joint

Instability may be due to a single-event trauma where the capsule and glenoid labrum are torn or may be atraumatic representing a tendency toward a loose joint capsule. When either inherently loose or torn loose, the capsule may be unable to support the shoulder in the extremes of abduction and external rotation. Therefore, exercises that place the shoulder in this position should be modified or avoided such as the behind-the-neck press, the behind-the-neck pulldown, and the pec deck(59) (Figs 5, 9, and 10). It may also occur from repeatedly hyperextending the shoulder during the performance of bench presses, flyes, and the pec deck by lowering the bar or dumbbells to the point where the elbows are behind the back. Weight lifters not only place their shoulders in an abducted/externally rotated or hyperextended position, but also do it with considerable weight held in their hands. The general principle to use in advising patients is to avoid positions in which the elbows extend behind the coronal plane of the body. It is important to remind the patient that overhead positions are less stable and therefore more risky. While instability is often caused by gradual repetitive capsular stretching injury, Olympic lifters tend to suffer instability resulting from a single-event traumatic injury. They often lose control of a weight while holding the weight in an overhead position.(54)

It should be noted that the diagnosis of anterior instability may be overlooked due to a misleading response to testing. Patients often experience pain in the posterior shoulder when the arm is placed in an abducted/externally rotated position. It is thought that this posterior pain arises from traction or compression of the posterior structures as the shoulder subluxates forward. Also, anterior instability may be misdiagnosed as a rotator cuff strain.

The load and shift test is a form of instability testing that involves passively translating the humeral head while stabilizing the glenoid. This test may be performed with the patient in various positions, including seated with arm by the side, seated with the arm in the abducted and externally rotated position, and supine with the arm abducted and externally rotated. Excessive forward excursion of the humerus associated with either pain, apprehension, or clicking may all be considered positive signs. The relocation test should reduce the positive findings. This test involves restabilizing the humerus by pushing the head of the humerus from anterior to posterior while placing the arm in the "apprehension" position of abduction/external rotation. The relocation test is performed with the patient supine. Care should be taken to support the arm to avoid protective muscle spasm.(53)

Impingement may occur secondary to shoulder instability.(60) The response to testing includes pain felt with the apprehension test that is relieved by the relocation test. Apprehension is usually not the primary response to testing. In such cases, the underlying instability and the subsequent impingement should both be addressed.

Less common shoulder injuries related to weight training

There have been a number of reports in the literature of suprascapular nerve injury either via stretch or compression. Abduction of the arm against resistance has been implicated as the mechanism of injury.(61) The lateral raise and the shoulder press are two exercises that involve abduction against resistance.

A number of reports(5,20,62) document the occurrence of tears of the pectoralis major muscle or tendon, usually from bench pressing. The tendon may either avulse from the bone, tear at the musculotendinous junction, or tear in the muscle itself, usually near the musculotendinous junction. Most of these injuries occur while the arms are extended behind the chest.(20) To prevent such injuries the lifter should avoid lowering the bar to the point at which the shoulder is hyperextended.(5,20,62) Regular stretching may be helpful.

An entity known as atraumatic osteolysis of the distal clavicle has been reported in a number of studies as being related to weight training. This condition, referred to as weight lifter's shoulder, is marked by pain at the acromioclavicular joint while performing the dip, bench press, clean-and-jerk, and overhead presses. Radiographs show osteoporosis and loss of subchondral bony detail at the distal clavicle. In addition, cystic changes may also be present.(63,64) Atraumatic osteolysis is believed to result from repetitive loading of the acromioclavicular joint resulting in neurovascular compromise to the distal clavicle. Management is difficult given that most patients are serious lifters. Either a dramatic reduction in weight, elimination of the offending maneuver, or substitution of exercises may be suggested. Alternatives to the bench press include a narrow grip bench, cable crossovers, and the incline or decline press. If unsuccessful, elimination of heavy lifting for 6 months is recommended. There is some evidence that those treated surgically with amputation of the distal I to 2 cm of the clavicle are able to return to some lifting. However, many athletes are not able to return to a pre-injury level of lifting.(63)

KNEE INJURIES

Knee pain secondary to weight lifting is often caused by an overuse injury involving the patellofemoral joint, or the quadriceps or patellar tendons. However, tears to the menisci may also occur. Patellofemoral pain syndrome may or may not include chondromalacia. Ligamentous problems are rare except when caused by trauma during Olympic weight lifting.

One study(65) found that former elite weight lifters had a 31% incidence of osteoarthritis of the knee as compared with former runners who had only a 14% increased incidence of osteoarthritis of the knee. The patellofemoral joint was the most common location. One should keep in mind that Olympic lifts require ballistically dropping into a very deep squat, to the point where the hamstrings rest against the calves. Such extreme squatting positions result in very high meniscal compressive forces and patellofemoral contact forces. Also, competitive lifters often lift maximal weights. Elastic knee wraps are frequently worn while performing squats and other heavy leg exercises with the intention of protecting the knee joint. Such wraps may increase the friction between the patella and the underlying cartilage, thus increasing the risk of knee injury.(9,40)

Some general rules of thumb for athletes with patellofemoral pain are:

*Do not perform squats through a painful range of motion(often in the midrange).
*Do not perform lunges or squats with the knees caving inward (keep the knees over the toes).
*Focus on the last 10' to 15' of knee extension when performing knee extension exercises.
*Take care not to press the kneecaps into the bench when performing leg curls (or any prone position of exercise). In other words, move toward the foot of the bench so that the patellae are not compressed while the knees are extended.

(A grain of Salt may be needed here)

If the weight lifter has had damage to the anterior cruciate ligament it is important to:

*Avoid knee extension exercises (especially from 70' of flexion to full extension).
*Substitute seated knee extensions with closed chain exercises such as partial squats and leg presses.
*Focus on hamstring development (adds some dynamic support).

This author has seen the greatest number of knee injuries occur as the result of hack squats. However, regular squats, leg presses, knee extensions, lunges, step-ups, and leg curls may all play a role in overuse injuries. In particular, bouncing at the bottom of a squat has been implicated as a cause of patellar tendon strain due to the high eccentric forces generated during this technique.(9) One case report even documents a bilateral quadriceps tendon rupture that occurred while squatting.(23)

CONCLUSION

Weight training is a wonderful form of exercise when practiced sensibly and in moderation. Helping athletes and other patients to continue performing their strength training exercises by modifying their programs in an attempt to prevent injuries is a great benefit. We should consider the advice given by Hippocrates 2,400 years ago: "Exercise should be mild at first, gradually increasing, gently warming and not taking too much from the available strength . . . exercise should be as far as possible natural and there should be plenty of them; violent exercise should be sparingly used, and only when necessary."(66, p.289)

REFERENCES
1. American College of Sports Medicine. American College of Sports Medicine position stand: the recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness in healthy adults. Med Sci Sports Exerc. 1990;22(2):265-274.
2. Hunter GR. Muscle physiology. In: Baechle TR, ed. Essentials of Strength Training and Conditioning. Champaign, ILL: Human Kinetics; 1994.
3. Dudley GA, Tesch PA, Miller BJ, Buchanan P. Importance of eccentric actions in performance adaptations to resistance training. Aviat Space Environ Med 1991;62(6):543-550.
4. Westcott W. Be Strong: Strength Training for Muscular Fitness for Men and Women. Dubuque, Iowa: Brown & Benchmark; 1993.
5. Reynolds EJ, Semel RH, Fox RT,Coughlin SP, Horrigan JM, Colanero AF. Pectoralis major tears: etiology and prevention. Chiro Sports Med. 1993;7:83-89.
6. Kulund DN, Dewey JB, Brubaker JB, Roberts JR. Olympic weightlifting injuries. Physician Sports Med. 1978;6:111-119.
7. Videman T, Sarna A, Battie MC, et al. The long-term effects of physical loading and exercise lifestyles on back-related symptoms, disability, and spinal pathology among men. Spine. 1995;20:699-709.
8. Parrillo J. Parrillo Performance Training. Cincinnati, Ohio: Parrillo Performance; 1990.
9. Harman E.The biomechanics of resistance training. In: Baechle TR, ed. Essentials of Strength Training and Conditioning. Champaign, ILL: Human Kinetics; 1994.
10.Jones B, Cowan D, Tomlinson P, Polly D, Robinson J. Risks for training injuries in army recruits. Med Sci Sports Exerc. 1988;20(2):S42.
11.Stauber WT. Eccentric action of muscles: physiology, injury and adaptation. Exerc Sports Sci Rev. 1989; 19:157.
12.Albert M. Eccentric Muscle Training in Sports and Orthopaedics. 2nd ed. New York, NY: Churchill Livingstone; 1995.
13.Newman DJ, McPhail G, Mills KR, Edwards RHT. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci. 1983;61:109-122.
14.Stanton P, Purdam C. Hamstring injuries in sprinting-the role of eccentric exercise. J Orthop Sports Phys Ther. 1989;10:343.
15.Blazina ME, Kerlan RK, Jobe FW, et al. jumper's knee. Orthop Clin North Am. 1973;4:665.
16.Bompa TO. Periodization of Strength: The New Wave in Strength Training. Chandler, Ariz: Progenex; 1993.
17.Shellock FG. Research applications: physiological, psychological and injury prevention aspects of warm-up. NSCA J. 1986;8:24-27.
18.Smith CA. The warm-up procedure: to stretch or not to stretch. A brief review. J Orthop Sports Phys Ther. 1994;19(l):12-17.
19.Haykowsky MJ, Findlay JM, Ignaszewski AP. Aneurysmal subarachnoid hemorrhage associated with weight training: three case reports. Clin J Sports Med. 1996;6(l):52-55.
20.Wolfe SW, Wickiewicz TL, Cavanaugh JT. Ruptures of the pectoralis major muscle. Am J Sports Med. 1992;20(5):587-593.
21.D'Alessandro DF, Shields CL, Tibone JE, Chandler RW. Repair of distal biceps tendon ruptures in athletes. Am J Sports Med. 1993;21(1):114-119.
22.Bach BR, Warren RF, Wickiewicz TL. Triceps rupture. Am J Sports Med. 1987;15(3):285-289.
23.Grenier R, Guimont A. Simultaneous bilateral rupture of the quadriceps tendon and leg fractures in a weightlifter. Am J Sports Med. 1983;11:451-453.
24.Mannis CI. Transchondral fracture of the dome of the talus sustained during weight training. Am J Sports Med. 1983;11:354-355.
25.McCue FC, Hussamy OD, Baumgarten TE. An unusual source of wrist pain: Kienbock's disease in a weightlifter. Physician Sportsmed.1995;23(12):33-38.
26.Brady TA, Cahill BR, Bodnar LM. Weight training-related injuries in the high school athlete. Am J Sports Med. 1982;1 0(l):1-5.
27.Brown EW, Kimball RG. Medical history associated with adolescent powerlifting. Pediatrics. 1983;72(5):636-644.
28.Webb DR. Strength training in children and adolescents. Ped Clin North Am. 1990;37(5):1187-1210.
29.Risser WL. Musculoskeletal injuries caused byweighttraining. Clin Pediatr. 1990; 29(6):305-310.
30.Mundt DJ, Kelsy JL, Golden AL, et al. An epidemiological study of sports and weight lifting as possible risk factors for herniated lumbar and cervical discs. Am J Sports Med. 1993;21(6):854-860.
31.Risser WL, Risser JMH, Preston D. Weight training injuries in adolescents. AJDC. 1990;144:1015-1017.
32.Alexander MJL. Biomechanical aspects of lumbar spine injuries in athletes:a review. Can J Appl Sport Sci. 1985;10(l):l-20.
33.Fortin JD. Weight lifting. In: Watkins RG, ed. The Spine in Sports. St. Louis, Mo: Mosby-Year Book; 1996.
34.Kotani PT, Ichikawa N, Wabayashi W, Yoshii T, Koshimune M. Studies of spondylosis found among weightlifters. Br J Sports Med 1971;6:4-8.
35.Nachemson A. The load on lumbar discs in different positions of the body. Clin Orthop. 1966;45:107-122.
36.Floyd WF, Silver PHS. The function of the erectores spinae muscles in certain movements and postures in man. J Physiol 1955;129:184-203.
37.Adams MA, Dolan P. Recent advances in lumbar spine mechanics and their clinical significance. Clin Biomech. 1995;10(1):3-19.
38.Brinckmann P, Biggemann M, Hilweg D. Fatigue fracture of human lumbar vertebrae. Clin Biomech. 1988;3(suppl 1):51-523.
39.Granhed H, Morelli B. Low back pain among retired wrestlers and heavyweight lifters. Am J Sports Med. 1988;1 6:530-533.
40.Bogduk N, Twomey LT. Clinical Anatomy of the Lumbar Spine. 2nd ed. New York, NY: Churchill Livingstone; 1991.
41.Farfan HF, Cosette JW, Robertson GH, et al. The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration. J Bone Joint Surg. 1970;52A:495.
42.Kelsey JL, et al. An epidemiologic study of lifting and twisting on the job and risk for acute prolapsed lumbar intervertebral disc. J Orthop Res. 1984;2:61-66.
43.Gray H, Clemente CD, ed. Gray's Anatomy. 13th ed. Philadelphia, Pa: Lea & Febiger; 1985.
44.Robinson J. Beyond Legendary Abs. Los Angeles, Calif: Health for Life; 1986.
45.Bogduk N, Pearcy M, Hadfield G. Anatomy and biomechanics of psoas major. Clin Biomech. 1992;7:109-119.
46.Janda V. Muscles and motor control in cervicogenic disorders: assessment and management. In: Grant R, ed. Physical Therapy of the Cervical and Thoracic Spine. 2nd ed. New York, NY: Churchil I Livingstone; 1994.
47.Porterfield JA, De Rosa C. Mechanical Neck Pain. Philadelphia, Pa: W.B. Saunders; 1995.
48.Chek P, Curl DD. Posture and head pain. In: Curl DD, ed. Chiropractic Approach to Head Pain. Baltimore, Md: Williams & Wilkins; 1994.
49.Lefavi RG, Smith DE, Deters TC, et al. Lower cervical disc trauma in weight training: possible causes and preventative techniques. Natl Strength Conditioning Assoc J. 1993;15(2):34-36.
50.Cailliet R. Neck and Arm Pain. 2nd ed. Philadelphia: Davis Co; 1981.
51.Jordon A, Ostergaard K. Rehabilitation of neck/shoulder patients in primary health care clinics. JMPT. 1996;1 9(l):32-35.
52.Jordon A, Ostergaard K. Implementation of neck/shoulder rehabilitation in primary health care clinics. JMPT. 1996;19(l):36-40.
53 Souza TA, ed. Sports Injuries of the Shoulder. New York, NY:Churchill Livingstone; 1994.
54.Navasier TJ. Weight lifting-risks and injuries to the shoulder. Clin Sports Med. 1991;10:615-621.
55.Harman E. Weight training safety: a biomechanical perspective. Strength Conditioning. 1994; 16(5):55-60.
56.Sharkey NA, Marder RA. The rotator cuff opposes superior translation of the humeral head. Am J Sports Med. 1995;23(3):270-275.
57.Horrigan J, Robinson J. The 7-Minute Rotator Cuff Solution. Los Angeles, Calif: Health for Life; 1991.
58.Solem-Bertoft E, Thomas KA, Westerberg CE. The influence of scapular retraction and protraction on the width of the subacromial space. Clin Orthop. 1993;296:99-103.
59.Gross ML, Brenner SL, Esformes I, Sonzogni JJ. Anterior shoulder instability in weight lifters. Am J Sports Med. 1993;21(4):599-603.
60.Ticker JB, Fealy S, Fu FH. Instability and impingement in the athlete's shoulder. Sports Med. 1995;19(6):418-426.
61.Collins K, Peterson K. Diagnosing suprascapular neuropathy. Physician Sportsmed. 1994;22(6):59-69.
62.Liu J, Wu JJ, Chang CY, Chou YH, Lo WH. Avulsion of the pectoralis major tendon. Am J Sports Med. 1992;20(3):366-368.
63.Slawksi DP, Cahill BR. Atraumatic osteolysis of the distal clavicle. Am J Sports Med. 1994;22(2):267-271.
64.Scavenius M, Iversen BF. Nontraumatic clavicular osteolysis in weight lifters. Am J Sports Med. 1992;20:463.
65.Kujala UM, Kettunen J, Paananen H, et al. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum. 1995;38(4):539-546.
66.Hippocrates; Jones WHS, trans. Regimen 1. In: On the Universe. London, England: William Heineman Ltd, London: G. P. Putnam and Sons; 1931.

APPENDIX D. PRACTICE AID

Recommendations for Preventing Low Back Injuries While Weight Training

1. Keep the lower back in the neutral (lordotic) position during the performance of most lifts, such as dead-lifts, rows, and squats. To maintain this position lightly co-contract the abdominals and the glutes, making sure to avoid hyperextension. Abdominal co-contraction helps to raise intra-abdominal pressure and stiffen the spine. A weight-lifting belt may also facilitate maintaining this posture. If necessary employing trunk stabilization exercises as a regular part of your workout may help you learn to maintain this posture.

2. Keep the knees at least slightly bent during all rowing and flexed exercises.

3. Keep the trunk as vertical as possible during squats.

4. Avoid hip flexor dominant abdominal exercises. These exercises include straight leg raises, Roman Chair leg raises, full sit-ups, and most abdominal machines, especially those where the feet are hooked in. To decrease psoas involvement during crunches, plantar flex the feet and pull down with the heels to contract the hamstrings.

5. Maintain adequate strength and endurance in the lumbar extensor muscles.

6. Perform repeated prone extensions (cobra) prior to training and following all abdominal training that involves spinal flexion.

[Well, okay, if you're interested:

Prone Cobra:
Lay face down (prone) arms at sides. Raise the torso off the ground using your low back muscles. You may initiate the movement by contracting the glutes. Once up however use the low back to hold the torso up and relax the gluteals. Now that you are up externally rotate the arms and point the thumbs toward the sky. Now squeeze your shoulder blades together. Keep the chin tucked and hold the position.]

7. Avoid rotational exercises for the obliques such as twists and rotary torso machines, unless you are involved in sports in which rotation forces commonly occur. Substitute diagonal and lateral movements instead.

8. Keep the hamstrings, psoas, and other hip muscles flexible through regular, slow, static stretching. Avoid standing bent-over stretches as these can overstretch the posterior ligaments of the spine.

Recommendations for Preventing Neck Injuries While Weight Training

1. Keep the cervical spine in a neutral position. Avoid pushing or holding the head forward, flexed, or extended. Avoid turning the head during the performance of exercises in which the neck muscles are involved. Tuck the chin in slightly and look straight ahead.

2. Make sure to perform range of motion and flexibility exercises for the neck as part of your warm-up and cooldown.

3. Avoid behind-the-neck presses and behind-the-neck pull-downs. These exercises promote development of the forward head posture and may contribute to neck injury. Substitute presses and pull-downs in front.

4. Avoid unnecessarily tensing the neck and jaw musculature while training. Try to direct all of your energy to the working muscles. During the bench press keep your head resting on the bench and relaxed. A doubled towel placed under the head and neck may help.

5. Correct or balance postural flaws, such as increased thoracic kyphosis and the forward head posture, with specific rehabilitative exercises.

6. Strengthen the neck. Use light weights and greater repetitions, and progress very slowly. Isotonic exercises are probably best. However, if moderate to severe arthritis is present, isometric exercises may be better.

Recommendations for Preventing Shoulder Injuries While Weight Training

1. Do not ignore shoulder pain. Training through the pain will only lead to further and more severe injury.

2. Avoid exercises where the arm is abducted (raised to the side) in an internally rotated position, such as upright rows and thumbs-pointed-down laterals. Also, do not raise the arms above 90' while performing lateral raises.

3. Strengthen the external rotator muscles of the shoulder and keep them strong. This process involves regularly performing rotator cuff strengthening exercises-not just when you have an injury. The strength of the rotator cuff muscles should keep pace with the strength of the pectoral and deltoid muscles.

4. Keep the internal shoulder rotators flexible to avoid shortening. Be careful to avoid instability. Forceful stretching and stretching with weights should be avoided.

[Towel Stretch - Internal Rotation

Place right hand behind back.
With the left hand, dangle a towel behind the back.
Grasp the towel with the right hand.
Gently pull the right hand upward by raising the left arm to stretch the right shoulder.
Towel should be in vertical position.
Hold for 30 seconds. Repeat on other side. - Eric]

5. Avoid exercises where the rotator cuff is under extreme load.

6. Warm up the shoulders carefully before exercising them.

7. Strengthen the middle and lower traps and rhomboids to increase shoulder stability and ensure better scapular stabilization. Avoid protracted shoulder postural problems.

8. Avoid the pullover exercise or use with extreme caution. Care should be taken not to extend the arms back too far.

Recommendations for Preventing Knee Injuries While Weight Training

1. Avoid rapidly lowering your body or the weight while performing leg presses or squat variations.

2. Avoid allowing the knee to bend more than 90 degrees during the performance of leg exercises such as the squat, leg press, or lunge. Keep the knee from traveling forward of the foot and also do not drop too low in the squat or bring the carriage back too far in the leg press exercises.

3. Make sure that the knee tracks over the center of the foot. Avoid the tendency for the knees to bend to the side as the weight is pushed up during the performance of a leg press or squat or similar exercise. Elastic tubing can be placed around the knees while squatting to help train this proper tracking of the knee. A large ball such as a 55-cm ball can be squeezed between the knees while squatting to help the tracking and also to co-contract the adductor muscles and the vastus medialis.

4. Avoid the use of elastic knee wraps.
__________________

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.



To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.
or
To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.


If you act sanctimonious I will just list out your logical fallacies until you get pissed off and spew blasphemous remarks.

Last edited by EricT; 05-20-2006 at 03:04 PM.
Reply With Quote