View Single Post
 
Old 03-04-2007, 04:09 PM
EricT EricT is offline
Rank: Heavyweight
 
Join Date: Jul 2005
Posts: 6,314
Default Fitness-Fatigue For Real

This is still a rough draft but I wanted to get it up. Now that I can edit again I'll probably be refining it or adding to it I've tried to keep it simple and limit the scope to the theory itself with just the briefest discussion of it's implications.

Fitness-Fatigue Model for Real

At any time preparedness is the difference between the positive effects of fitness and the negative affects of fatigue but since fatigue although very great doesn’t stick around very long we can take advantage of the fitness gained without overtraining. Intuitively it has to be this way or you’d never have any apparent progress. What it really means is that it allows us to take advantage of the fact that while the fatigue impulse may be twice as high as the fitness impulse the fatigue decays three times as fast. The fitness gained is still a result of the training impulse.

How is supercompensation so much different than fitness-fatigue? At its heart it’s not. You work out (the stressor) and performance decreases. How long performance decreases depends on training status and the degree to which homeostasis was disrupted. But after some period of time you recover and performance theoretically increases past the point at which you started. This doesn’t go away because we have a fancier theory to look at. You workout. You recover. You get more fit.

Fitness-fatigue theory or dual factor simply enhances our understanding of this. It doesn’t just consider response to training but the factors involved and the interplay among them. What we had before with Seyle’s GAS theory is simply an initial period of fatigue followed by adaptation. However the initial fatigue is very comparable to Seyle’s Alarm Stage.

But I use the term theory losely. What it really is is a statistical model used by scientist to help predict exercise response. It is not in itself a physiological theory that relates to sports improvement. It is a model that gives rise to a qualitative measurement of exercise response in individual athletes. Banister er al. proposed this mathematical model in 1975 as a way to understand the fluctuation of athletic performance throughout periods of heavy traingin separated by taper periods. It is a way to mathematically model and study the effects of training on an individual by generating fatigue and fitness profiles. The model followed as a way to look at the training not the other way around.

But let me be very clear about something. As I mentioned above the fitness gained is STILL a result of the training stressor. It is not a result of the degree of fatigue. Greater fatigue does not LEAD to greater fitness as has been suggested. This kind of thinking could actually lead to regressions in performance rather than improvements. Especially once you consider that increasing the frequency between similar training bouts gives rise to an exponential accumulation of fatigue and a progressively greater and longer duration of fatigue while the fitness response to a single bout goes down. In other words if a certain amount of work would give rise to a fitness response adding to that and accumulating fatigue would only lesson the impact of each successive bout past that point.

Disrupting homeostasis to the point that we initiate an adaptive response results in more fitness. But there is more to it that allows us to manipulate our training at various stages of our career.

The model was contrived as a way to study training response and thus maximize training effectiveness for an INDIVIDUAL. It takes into account the fatigue and fitness response of individual bouts as well as long term response over loading periods and taper periods. It is thought necessary to schedule successive training bouts when fatigue is disapating in order to maximize the fitness response and to prevent the exponential accumulation of fatigue. Then a taper period is undergone to dissipate any accumulated fatigue. Accumulation of fatigue is not a goal in itself. It is simply that once it does accumulate a tapering period is necessary to realize the full fitness potential of a training period. Training is scheduled according to the needs of the individual athlete and the competitive season.

That is because the fitness-fatigue model does not treat all fatigue after training the same. Different things cause different levels and durations of fatigue and fitness. So the two-factor model suggests ways in which we can periodize our training. It is NOT in and of itself a method of periodization.

For example, the training load, and total work performed, and training economy changes the magnitude and duration of the after-effects. Different types of work also. High volume inititates a much larger and immediate fatigue response than maximal work. High volume could be compared to the repetitive-effort days of Westside and maximal to the ME days. ME days must always precede RE days because of this. For DE days they fall differently depending of the status of the trainee. But from a simple perspective we can see that the weekly scheduling of a Westside routine will take into account facets of the two-factor model. It is scheduled to minimize accumulated fatigue for the individual. But a taper or deload period may be necessary when fatigue does accumulate, again, according to the needs of the athlete and the competitive season. This is the dual-factor model at work.


At whatever level of training you are, your preparedness is still the difference between fitness and fatigue and the effects of fitness can not be displayed unless fatigue has dissipated. This is really the central point.

This is true whether you are a beginner or advanced athlete. There is no “single factor training” as such. There is simply effective and less effective ways of training, just as there always have been. The effects of fatigue and recovery, their interplay, become more apparent the more advanced you get.

What is the real primary difference between looking at training in terms of “single factor” or “dual factor”? If you look at it in terms of single factor thinking you do not view fatigue as an independent factor but only consider recovery. Therefore if you fail to make progress your assumption is you did not fully recover. Obvious conclusion? More time to recover.

How many people actually work this way? Not many.

The definition of dual factor or "fitness-fatigue' itself, I.E. the one developed by some of the writers in the sticky is pretty much on it's surface an advanced periodization method and NOT a definition of the adaptation model itself.

This is the idea that the dual factor theory basically necessitates a long period of peaking fatigue (say 4 to 6 weeks) and then a peek. If you don’t do that you are “using single factor theory”. So the idea is that dual factor has replaced supercompensation and has therefore spelled out a surperior way of training for EVERY ATHLETE. This is complete nonsense.

This is the reality in a nutshell, you do not need to load for extended periods until you can no longer make progress during a shorter period. So an advanced athlete certainly cannot make progress on a workout to workout basis in a realistic manner. Why this is true is beyond my scope since there are so many parameters that would make different ways of training workout to workout fail for the advanced. And let’s forget all the comparisons to HIT, shall we, that’s a whole nother can of worms. Let’s just sufficeth to say that he can’t make any real good progress on the squat every workout.

So what would be the next step? Logically he would switch to making progress on the shortest time period possible for as long as possible. Instead of making progress every 36 to 72 hours he switches to a week (or 4 or 5 days or whatever). What has this got to do with single factor vs dual factor? Not a damn thing. A lot of confusion has been caused that is causing beginners to jump into advanced programs.

Advanced programs are for the advanced. Quite frankly that excludes most trainees. But those programs take advantage of one of the facets of the dual-factor model of adaptation. Programming and the theory that allows it to work are TWO DIFFERENT THINGS. Regardless, if they work it is because they are founded on experience and knowledge of advanced periodization. If they work it is because they coincide with how the body adapts (the theory) but ALSO because they coincide with the particular athlete’s needs at that time.

The athlete has been referred to as a dynamic machine and never a static model. You know a lot of people don't realize that you can react to a program one way in one stage of training and later on derive completely differnet results from that same program because of the state of the "adaptive system" at THAT PARTICULAR phase of development.

Hope that doesn't sound all "sciency" becaue it's not. It's just the opposite. Science the way is has traditionally been done would have you believe that the athlete IS a static model and that mathematical means can be used to measure adaptation accross a population. The fact is that a reliable model can only be developed for a test pool of one.

To say that an adaptation theory tells us there is a superior way of programming for everyone, even among a population of advanced athletes, is to say the same thing: we are static models instead of dynamic machines. But we are not. EVERYTHING changes. The ability to recover changes. The amount of work or stimulus that it takes to create an adaptive response is different for a beginner and an advanced athlete. And pretty much everyone falls in between that. Everyone is not the same.

But the theory does not say this so there is really no conflict. There is no single-factor versus dual-factor. Supercompensation still plays. The GAS model is not incorrect and opposed by the fitness fatigue model. The program a person should be on still depends on their training status just like it always has. When you look at it you must take into account all the knowledge that has been derived from the model and not interpret the model itself as a prescription. In a nutshell
Fitness-Fatigue Model for Real

At any time preparedness is the difference between the positive effects of fitness and the negative affects of fatigue but since fatigue although very great doesn’t stick around very long we can take advantage of the fitness gained without overtraining. Intuitively it has to be this way or you’d never have any apparent progress. What it really means is that it allows us to take advantage of the fact that while the fatigue impulse may be twice as high as the fitness impulse the fatigue decays three times as fast. The fitness gained is still a result of the training impulse.

How is supercompensation so much different than fitness-fatigue? At its heart it’s not. You work out (the stressor) and performance decreases. How long performance decreases depends on training status and the degree to which homeostasis was disrupted. But after some period of time you recover and performance theoretically increases past the point at which you started. This doesn’t go away because we have a fancier theory to look at. You workout. You recover. You get more fit.

Fitness-fatigue theory or dual factor simply enhances our understanding of this. It doesn’t just consider response to training but the factors involved and the interplay among them. What we had before with Seyle’s GAS theory is simply an initial period of fatigue followed by adaptation. However the initial fatigue is very comparable to Seyle’s Alarm Stage.

But I use the term theory losely. What it really is is a statistical model used by scientist to help predict exercise response. It is not in itself a physiological theory that relates to sports improvement. It is a model that gives rise to a qualitative measurement of exercise response in individual athletes. Banister er al. proposed this mathematical model in 1975 as a way to understand the fluctuation of athletic performance throughout periods of heavy traingin separated by taper periods. It is a way to mathematically model and study the effects of training on an individual by generating fatigue and fitness profiles. The model followed as a way to look at the training not the other way around.

But let me be very clear about something. As I mentioned above the fitness gained is STILL a result of the training stressor. It is not a result of the degree of fatigue. Greater fatigue does not LEAD to greater fitness as has been suggested. This kind of thinking could actually lead to regressions in performance rather than improvements. Especially once you consider that increasing the frequency between similar training bouts gives rise to an exponential accumulation of fatigue and a progressively greater and longer duration of fatigue while the fitness response to a single bout goes down. In other words if a certain amount of work would give rise to a fitness response adding to that and accumulating fatigue would only lesson the impact of each successive bout past that point.

Disrupting homeostasis to the point that we initiate an adaptive response results in more fitness. But there is more to it that allows us to manipulate our training at various stages of our career.

The model was contrived as a way to study training response and thus maximize training effectiveness for an INDIVIDUAL. It takes into account the fatigue and fitness response of individual bouts as well as long term response over loading periods and taper periods. It is thought necessary to schedule successive training bouts when fatigue is disapating in order to maximize the fitness response and to prevent the exponential accumulation of fatigue. Then a taper period is undergone to dissipate any accumulated fatigue. Accumulation of fatigue is not a goal in itself. It is simply that once it does accumulate a tapering period is necessary to realize the full fitness potential of a training period. Training is scheduled according to the needs of the individual athlete and the competitive season.

That is because the fitness-fatigue model does not treat all fatigue after training the same. Different things cause different levels and durations of fatigue and fitness. So the two-factor model suggests ways in which we can periodize our training. It is NOT in and of itself a method of periodization.

For example, the training load, and total work performed, and training economy changes the magnitude and duration of the after-effects. Different types of work also. High volume inititates a much larger and immediate fatigue response than maximal work. High volume could be compared to the repetitive-effort days of Westside and maximal to the ME days. ME days must always precede RE days because of this. For DE days they fall differently depending of the status of the trainee. But from a simple perspective we can see that the weekly scheduling of a Westside routine will take into account facets of the two-factor model. It is scheduled to minimize accumulated fatigue for the individual. But a taper or deload period may be necessary when fatigue does accumulate, again, according to the needs of the athlete and the competitive season. This is the dual-factor model at work.


At whatever level of training you are, your preparedness is still the difference between fitness and fatigue and the effects of fitness can not be displayed unless fatigue has dissipated. This is really the central point.

This is true whether you are a beginner or advanced athlete. There is no “single factor training” as such. There is simply effective and less effective ways of training, just as there always have been. The effects of fatigue and recovery, their interplay, become more apparent the more advanced you get.

What is the real primary difference between looking at training in terms of “single factor” or “dual factor”? If you look at it in terms of single factor thinking you do not view fatigue as an independent factor but only consider recovery. Therefore if you fail to make progress your assumption is you did not fully recover. Obvious conclusion? More time to recover.

How many people actually work this way? Not many.

The definition of dual factor or "fitness-fatigue' itself, I.E. the one developed by some of the writers in the sticky is pretty much on it's surface an advanced periodization method and NOT a definition of the adaptation model itself.

This is the idea that the dual factor theory basically necessitates a long period of peaking fatigue (say 4 to 6 weeks) and then a peek. If you don’t do that you are “using single factor theory”. So the idea is that dual factor has replaced supercompensation and has therefore spelled out a surperior way of training for EVERY ATHLETE. This is complete nonsense.

This is the reality in a nutshell, you do not need to load for extended periods until you can no longer make progress during a shorter period. So an advanced athlete certainly cannot make progress on a workout to workout basis in a realistic manner. Why this is true is beyond my scope since there are so many parameters that would make different ways of training workout to workout fail for the advanced. And let’s forget all the comparisons to HIT, shall we, that’s a whole nother can of worms. Let’s just sufficeth to say that he can’t make any real good progress on the squat every workout.

So what would be the next step? Logically he would switch to making progress on the shortest time period possible for as long as possible. Instead of making progress every 36 to 72 hours he switches to a week (or 4 or 5 days or whatever). What has this got to do with single factor vs dual factor? Not a damn thing. A lot of confusion has been caused that is causing beginners to jump into advanced programs.

Advanced programs are for the advanced. Quite frankly that excludes most trainees. But those programs take advantage of one of the facets of the dual-factor model of adaptation. Programming and the theory that allows it to work are TWO DIFFERENT THINGS. Regardless, if they work it is because they are founded on experience and knowledge of advanced periodization. If they work it is because they coincide with how the body adapts (the theory) but ALSO because they coincide with the particular athlete’s needs at that time.

The athlete has been referred to as a dynamic machine and never a static model. You know a lot of people don't realize that you can react to a program one way in one stage of training and later on derive completely differnet results from that same program because of the state of the "adaptive system" at THAT PARTICULAR phase of development.

Hope that doesn't sound all "sciency" becaue it's not. It's just the opposite. Science the way is has traditionally been done would have you believe that the athlete IS a static model and that mathematical means can be used to measure adaptation accross a population. The fact is that a reliable model can only be developed for a test pool of one.

To say that an adaptation theory tells us there is a superior way of programming for everyone, even among a population of advanced athletes, is to say the same thing: we are static models instead of dynamic machines. But we are not. EVERYTHING changes. The ability to recover changes. The amount of work or stimulus that it takes to create an adaptive response is different for a beginner and an advanced athlete. And pretty much everyone falls in between that. Everyone is not the same.

But the theory does not say this so there is really no conflict. There is no single-factor versus dual-factor. Supercompensation still plays. The GAS model is not incorrect and opposed by the fitness fatigue model. The program a person should be on still depends on their training status just like it always has. When we look at it we must take into account all the knowledge that may be gained from the model and not look at the model as a prescription in itself. In a nutshell what we get is that preparedness is maximized by maximizing fitness while minimizing fatigue.
__________________

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.



To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.
or
To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.


If you act sanctimonious I will just list out your logical fallacies until you get pissed off and spew blasphemous remarks.

Last edited by EricT; 03-06-2007 at 02:58 PM.
Reply With Quote