Thread: Injury rates
View Single Post
 
Old 09-16-2008, 04:21 PM
_Wolf_'s Avatar
_Wolf_ _Wolf_ is offline
Rank: Light Heavyweight
 
Join Date: Jul 2005
Location: Trinity University, San Antonio, Texas
Posts: 4,794
Send a message via MSN to _Wolf_
Default

Squat biomechanics
Med Sci Sports Exerc. 2001 Jun;33(6):984-98.Click here to read Links
A three-dimensional biomechanical analysis of the squat during varying stance widths.
Escamilla RF, Fleisig GS, Lowry TM, Barrentine SW, Andrews JR.

Michael W. Krzyzewski Human Performance Laboratory, Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.

PURPOSE: The purpose of this study was to quantify biomechanical parameters employing two-dimensional (2-D) and three-dimensional (3-D) analyses while performing the squat with varying stance widths. METHODS: Two 60-Hz cameras recorded 39 lifters during a national powerlifting championship. Stance width was normalized by shoulder width (SW), and three stance groups were defined: 1) narrow stance squat (NS), 107 +/- 10% SW; 2) medium stance squat (MS), 142 +/- 12% SW; and 3) wide stance squat (WS), 169 +/- 12% SW. RESULTS: Most biomechanical differences among the three stance groups and between 2-D and 3-D analyses occurred between the NS and WS. Compared with the NS at 45 degrees and 90 degrees knee flexion angle (KF), the hips flexed 6-11 degrees more and the thighs were 7-12 degrees more horizontal during the MS and WS. Compared with the NS at 90 degrees and maximum KF, the shanks were 5-9 degrees more vertical and the feet were turned out 6 degrees more during the WS. No significant differences occurred in trunk positions. Hip and thigh angles were 3-13 degrees less in 2-D compared with 3-D analyses. Ankle plantar flexor (10-51 N.m), knee extensor (359-573 N.m), and hip extensor (275-577 N.m) net muscle moments were generated for the NS, whereas ankle dorsiflexor (34-284 N.m), knee extensor (447-756 N.m), and hip extensor (382-628 N.m) net muscle moments were generated for the MS and WS. Significant differences in ankle and knee moment arms between 2-D and 3-D analyses were 7-9 cm during the NS, 12-14 cm during the MS, and 16-18 cm during the WS. CONCLUSIONS: Ankle plantar flexor net muscle moments were generated during the NS, ankle dorsiflexor net muscle moments were produced during the MS and WS, and knee and hip moments were greater during the WS compared with the NS. A 3-D biomechanical analysis of the squat is more accurate than a 2-D biomechanical analysis, especially during the WS.

J Strength Cond Res. 2003 Nov;17(4):629-33.Links
Effect of knee position on hip and knee torques during the barbell squat.
Fry AC, Smith JC, Schilling BK.

Human Performance Laboratories, The University of Memphis, Memphis, Tennessee 38152, USA.

Some recommendations suggest keeping the shank as vertical as possible during the barbell squat, thus keeping the knees from moving past the toes. This study examined joint kinetics occurring when forward displacement of the knees is restricted vs. when such movement is not restricted. Seven weight-trained men (mean +/- SD; age = 27.9 +/- 5.2 years) were videotaped while performing 2 variations of parallel barbell squats (barbell load = body weight). Either the knees were permitted to move anteriorly past the toes (unrestricted) or a wooden barrier prevented the knees from moving anteriorly past the toes (restricted). Differences resulted between static knee and hip torques for both types of squat as well as when both squat variations were compared with each other (p < 0.05). For the unrestricted squat, knee torque (N.m; mean +/- SD) = 150.1 +/- 50.8 and hip torque = 28.2 +/- 65.0. For the restricted squat, knee torque = 117.3 +/- 34.2 and hip torque = 302.7 +/- 71.2. Restricted squats also produced more anterior lean of the trunk and shank and a greater internal angle at the knees and ankles. The squat technique used can affect the distribution of forces between the knees and hips and on the kinematic properties of the exercise. PRACTICAL APPLICATIONS: Although restricting forward movement of the knees may minimize stress on the knees, it is likely that forces are inappropriately transferred to the hips and low-back region. Thus, appropriate joint loading during this exercise may require the knees to move slightly past the toes.

Med Sci Sports Exerc. 2001 Jan;33(1):127-41.Click here to read Links
Knee biomechanics of the dynamic squat exercise.
Escamilla RF.

Michael W. Krzyzewski Human Performance Laboratory, Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA.

PURPOSE: Because a strong and stable knee is paramount to an athlete's or patient's success, an understanding of knee biomechanics while performing the squat is helpful to therapists, trainers, sports medicine physicians, researchers, coaches, and athletes who are interested in closed kinetic chain exercises, knee rehabilitation, and training for sport. The purpose of this review was to examine knee biomechanics during the dynamic squat exercise. METHODS: Tibiofemoral shear and compressive forces, patellofemoral compressive force, knee muscle activity, and knee stability were reviewed and discussed relative to athletic performance, injury potential, and rehabilitation. RESULTS: Low to moderate posterior shear forces, restrained primarily by the posterior cruciate ligament (PCL), were generated throughout the squat for all knee flexion angles. Low anterior shear forces, restrained primarily by the anterior cruciate ligament (ACL), were generated between 0 and 60 degrees knee flexion. Patellofemoral compressive forces and tibiofemoral compressive and shear forces progressively increased as the knees flexed and decreased as the knees extended, reaching peak values near maximum knee flexion. Hence, training the squat in the functional range between 0 and 50 degrees knee flexion may be appropriate for many knee rehabilitation patients, because knee forces were minimum in the functional range. Quadriceps, hamstrings, and gastrocnemius activity generally increased as knee flexion increased, which supports athletes with healthy knees performing the parallel squat (thighs parallel to ground at maximum knee flexion) between 0 and 100 degrees knee flexion. Furthermore, it was demonstrated that the parallel squat was not injurious to the healthy knee. CONCLUSIONS: The squat was shown to be an effective exercise to employ during cruciate ligament or patellofemoral rehabilitation. For athletes with healthy knees, performing the parallel squat is recommended over the deep squat, because injury potential to the menisci and cruciate and collateral ligaments may increase with the deep squat. The squat does not compromise knee stability, and can enhance stability if performed correctly. Finally, the squat can be effective in developing hip, knee, and ankle musculature, because moderate to high quadriceps, hamstrings, and gastrocnemius activity were produced during the squat.

Med Sci Sports Exerc. 1998 Apr;30(4):556-69.
Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises.
Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR.

American Sports Medicine Institute, Birmingham, AL 35205, USA.

PURPOSE: Although closed (CKCE) and open (OKCE) kinetic chain exercises are used in athletic training and clinical environments, few studies have compared knee joint biomechanics while these exercises are performed dynamically. The purpose of this study was to quantify knee forces and muscle activity in CKCE (squat and leg press) and OKCE (knee extension). METHODS: Ten male subjects performed three repetitions of each exercise at their 12-repetition maximum. Kinematic, kinetic, and electromyographic data were calculated using video cameras (60 Hz), force transducers (960 Hz), and EMG (960 Hz). Mathematical muscle modeling and optimization techniques were employed to estimate internal muscle forces. RESULTS: Overall, the squat generated approximately twice as much hamstring activity as the leg press and knee extensions. Quadriceps muscle activity was greatest in CKCE when the knee was near full flexion and in OKCE when the knee was near full extension. OKCE produced more rectus femoris activity while CKCE produced more vasti muscle activity. Tibiofemoral compressive force was greatest in CKCE near full flexion and in OKCE near full extension. Peak tension in the posterior cruciate ligament was approximately twice as great in CKCE, and increased with knee flexion. Tension in the anterior cruciate ligament was present only in OKCE, and occurred near full extension. Patellofemoral compressive force was greatest in CKCE near full flexion and in the mid-range of the knee extending phase in OKCE. CONCLUSION: An understanding of these results can help in choosing appropriate exercises for rehabilitation and training.

Interesting comparative study:

Med Sci Sports Exerc. 2001 Sep;33(9):1552-66.
Effects of technique variations on knee biomechanics during the squat and leg press.
Escamilla RF, Fleisig GS, Zheng N, Lander JE, Barrentine SW, Andrews JR, Bergemann BW, Moorman CT 3rd.

Michael W. Krzyzewski Human Performance Laboratory, Division of Orthopaedic Surgery and Duke Sports Medicine, Duke University Medical Center, Durham, NC 27710, USA. rescamil@duke.edu

PURPOSE: The specific aim of this project was to quantify knee forces and muscle activity while performing squat and leg press exercises with technique variations. METHODS: Ten experienced male lifters performed the squat, a high foot placement leg press (LPH), and a low foot placement leg press (LPL) employing a wide stance (WS), narrow stance (NS), and two foot angle positions (feet straight and feet turned out 30 degrees ). RESULTS: No differences were found in muscle activity or knee forces between foot angle variations. The squat generated greater quadriceps and hamstrings activity than the LPH and LPL, the WS-LPH generated greater hamstrings activity than the NS-LPH, whereas the NS squat produced greater gastrocnemius activity than the WS squat. No ACL forces were produced for any exercise variation. Tibiofemoral (TF) compressive forces, PCL tensile forces, and patellofemoral (PF) compressive forces were generally greater in the squat than the LPH and LPL, and there were no differences in knee forces between the LPH and LPL. For all exercises, the WS generated greater PCL tensile forces than the NS, the NS produced greater TF and PF compressive forces than the WS during the LPH and LPL, whereas the WS generated greater TF and PF compressive forces than the NS during the squat. For all exercises, muscle activity and knee forces were generally greater in the knee extending phase than the knee flexing phase. CONCLUSIONS: The greater muscle activity and knee forces in the squat compared with the LPL and LPH implies the squat may be more effective in muscle development but should be used cautiously in those with PCL and PF disorders, especially at greater knee flexion angles. Because all forces increased with knee flexion, training within the functional 0-50 degrees range may be efficacious for those whose goal is to minimize knee forces. The lack of ACL forces implies that all exercises may be effective during ACL rehabilitation.
__________________

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.



To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.
Reply With Quote