Thread: How To Squat
View Single Post
 
Old 08-31-2005, 01:03 AM
Darkhorse Darkhorse is offline
Rank: Light Heavyweight
 
Join Date: Mar 2005
Location: CA
Posts: 4,174
Send a message via Yahoo to Darkhorse
Default

There are numerous methods of utilizing the squat in any athlete’s training program. While a variety of rep and set ranges are optimal for a bodybuilder who wishes to maximize hypertrophy, an athlete’s must carefully plan a training program to meet their goals. Even though squatting will lead to gains in size, strength, and jumping ability, the more specific the program, the greater the results. When an untrained subject begins lifting, numerous programs produce gains in practically all areas, but this changes rapidly, with limited progress being made unless something is altered. (28)

To utilize the squat to gain in size is both simple and complex. Individuals will respond to a variety of rep ranges in different manners based on fiber type, training history, biomechanics, injuries, etc. Bodybuilders, who are concerned exclusively with gains in size, should squat heavy, as fast-twitch muscle fibers have the greatest potential for hypertrophy. However, sarcoplasmic hypertrophy (growth of muscle tissue outside of the sarcoplasmic reticulum) will contribute to overall muscular size, and is obtained by training with lighter weights and higher reps. Rate of training is once again an individual decision, but as a general rule, the greater the volume of training, including time under tension (TUT) per workout, the longer one must wait before recovery is optimized, allowing supercompensation to take place. A word of caution about performing higher repetitions while squatting: As the set progresses, the degree of forward lean increases. While this is desirable to increase the stress on the hamstrings, it takes the emphasis off of the quadriceps, as well as increases the risk of injury. (29)

An athlete wishing to improve his vertical jump should not only squat, but perform a variety of assistance work specific to both improving squatting strength as well as specifically improving jumping skill. As jumping requires a great expenditure of force in a minimal amount of time, exercises such as squatting should be performed to increase muscle power, as muscle cross-sectional area significantly correlates to force output. (30) When wishing to increase one’s power through squatting to assist in the vertical jump, one must train to generate a high degree of force.(31 ,32 ,33 ) This is done by squatting a dynamic manner, where one is attempting to generate a large amount of power while using submaximal weights. This has been shown to provide a great training stimulus for improving the vertical jump. (34) A program consisting of a session once-weekly heavy squatting, ballistic lifting, and plyometric training, with each being performed during a separate workout, should provide maximal stimulus while allowing maximal recovery and supercompensation.(35,36)

When training to improve one’s overall squatting ability, expressed as a one-repetition maximum (1rm), once again a variety of programs may be utilized. The most common is a simple periodized program where, over time, the training weight is increased and the number of repetitions decreases. This sort of program is utilized by both Weightlifters and Powerlifters alike. A sample periodized program is included in Appendix B. Some sources state that you must train to failure, while others state that one should train until form begins to break down, leaving a small reserve of strength but reducing the risk of injury. It should be stated that there is no evidence that indicates training to failure produces a greater training stimulus than traditional volume training.

Far and away the most complicated, and controversial training program is the conjugate training method. Using this method one trains to develop maximal acceleration in the squat during one workout, and in another workout (72 hours later) generate maximum intensity in a similar exercise to the squat. This is based on an incredibly lengthy study by A. S. Prelepin, one of the greatest sports physiologists of the former Soviet Union. (37) This method also uses the practice of compensatory acceleration, where an athlete attempts to generate as much force as possible, by not only generating maximal acceleration, but by continuing to attempt to increase acceleration as the lifter’s leverage improves. The addition of chains or bands can increase the workload as well as force the athlete to work harder to accelerate the bar. Utilizing this system, the squat is trained for low repetitions (2) but a high number of sets (10 – 12), with training intensities being 50 – 70% of the athlete’s 1rm. Rest periods are short (45 – 75 seconds), and the squats are often performed on a box, which breaks up the eccentric-concentric chain, and inhibits the stretch reflex, forcing the athlete to generate the initial acceleration out of the bottom of the lift without the benefit of the elasticity of the muscle structure.

During the second workout, an exercise which taxes the muscles recruited when squatting, but not an actual squat, is performed for very low repetitions (1-3, usually one). The goal on this day is to improve neuromuscular coordination by increased motor unit recruiting, increased rate coding, and motor unit synchronization. This allows the athlete to continue to generate maximal intensity week after week, but by rotating exercises regularly optimal performance is maintained. For one microcycle, a squat-like exercise is performed, such as a box squat, rack squat, or front squat is performed, then the athlete switches to a different type of exercise, such as good mornings, performed standing, seated, from the rack, etc. for another microcycle, then switches exercises again, often to a pulling type exercise such as deadlifts with a variety of stances, from pins, from a platform, or any number of other variations. Once again, chains or bands may be added to increase the workload. A sample training program is included in Appendix B, and a variety of maximal effort exercises can be found in Appendix C.

Assistance work for the squat is of the utmost importance. The primary muscles which contribute to the squat, in no particular order, are the quadriceps, hamstrings, hip flexors/extensors, abdominals, and spinal erectors. When an athlete fails to rise from the bottom of a squat, it is important to note that not all of the muscles are failing simultaneously. Rather, a specific muscle will fail, and the key to progress is identifying the weakness, then strengthening it. A partial list of assistance exercises is provided in Appendix D. While it is impossible to simply state that if x happens when squatting, it is muscle y that is causing the problem, some general guidelines follow. If a lifter fails to rise from the bottom of a squat, it generally indicates either a weakness in the hip flexors and extensors, or a lack of acceleration due to inhibition of the golgi tendon organ (no stretch reflex – train with lighter weight and learn to accelerate if this is the case). If an athlete has a tendency to lean forward and dump the bar overhead, it generally indicates either weak hamstrings or erectors. If an athlete has trouble stabilizing the bar, or maintaining an upright posture, it is often due to a weakness in the abs.

The above factors assume that proper technique is being maintained. If this is not the case, no amount of specific work will overcome this problem. Drop the weight and concentrate on improving skill, which is far more important than training the ego, and less likely to lead to injury.

Safety is the key issue when squatting, or performing any lift. With a few simple precautions, practically anyone may learn to squat, and do so quite effectively. The rewards are well worth the effort. Squat heavy, squat often, and above all, squat safely.

1 Stance width and bar load effects on leg muscle activity during the parallel squat. McCaw ST; Melrose DR Med Sci Sports Exerc, 31(3):428-36 1999 Mar

2 Ariel, B.G., 1974. Biomechanical analysis of the knee joint during deep knee bends with a heavy load. Biomechanics. IV(1):44-52.

3 High- and low-bar squatting techniques during weight-training. Wretenberg P; Feng Y; Arborelius UP, Med Sci Sports Exerc, 28(2):218-24 1996 Feb

4 An analytical model of the knee for estimation of internal forces during exercise. Zheng N; Fleisig GS; Escamilla RF; Barrentine SW, J Biomech, 31(10):963-7 1998 Oct

5 Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Escamilla RF; Fleisig GS; Zheng N; Barrentine SW; Wilk KE; Andrews JR Med Sci Sports Exerc, 30(4):556-69 1998 Apr

6 A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Wilk KE; Escamilla RF; Fleisig GS; Barrentine SW; Andrews JR; Boyd ML Am J Sports Med, 24(4):518-27 1996 Jul-Aug

7 Chandler TJ and Stone MH. (1991) The squat exercise in athletic conditioning: a review of the literature. NSCA Journal. 13(5): 58-60.
8 Hsieh, H. and P.S. Walker. 1976. Stabilizing mechanisms of the loaded and unloaded knee joint. Journal of Bone and Joint Surgery. 58A(1):87-93.

9 Uhl, T.L. and P.V. Loubert. 1990. Axial compression effect on anterior displacement of the in vivo tibeofemoral joint. Master’s thesis, University of Michigan, Ann Arbor, MI.

10 Shankman, G. 1989. Training guidelines for strengthening the injured knee: basic concepts for the strength coach. NSCA Journal. 11(4):32-42.

11 Tipton, C.M., Matthes, R.D., Maynard, J.A. and Carey, R.A. 1975. The influence of physical activity on ligaments and tendons. Medicine and Science in Sports. 7(3):165-175.

12 Herrick, R.T., Stone, M.H. and Herrick, S. 1983. Injuries in strength-power activities. Powerlifting USA. 7(5):7-9.

13 Panariello, R.A., Backus, S.I., and Parker, J.W. 1994. The effect of the squat exercise on anterior-posterior knee translation in professional football players. American Journal of Sports Medicine. 22(6):768-773.

14 Steiner, M.E., Grana, W.A., Chillag, K., and Schelberg-Karnes, E. The effect of exercise on anterior-posterior knee laxity. 1986. American Journal of Sports Medicine. 14(1): 24-29.

15 Palmitier, R.A., Kai-Nan, A., Scott, S.G., and Chao, E.Y.S. 1991. Kinetic chain exercise in knee rehabilitation. Sports Medicine. 11(6):402-413.

16 McLaughlin, T.M., Lardner, T.J., and Dillman, C.J. 1978. Kinetics of the parallel squat. Research Quarterly. 49(2):175-189.

17 Garhammer, J. 1989. Weight lifting and Weight Training. In: Biomechanics of Sport, chapter 5, C.L. Vaughan, ed. Boca Raton FL: CRC Press. Pp. 169-211.

18 Granhed, H. and Morelli, B. 1988. Low back pain among retired wrestlers and heavyweight lifters. American journal of Sports Medicine. 16(5):530-533.

19 Kulund, D.N., Dewey, J.B., Brubaker, C.E., and Roberts, J.R. 1978. Olympic Weightlifting Injuries. Physician and Sports Medicine. 6(11):111-119.

20 A preliminary comparison of front and back squat exercises [see comments] Russell PJ; Phillips SJ Res Q Exerc Sport, 60(3):201-8 1989 Sep

21 J Biomech 1998 Oct;31(10):963-7 An analytical model of the knee for estimation of internal forces during exercise. Zheng N, Fleisig GS, Escamilla RF, Barrentine SW

22 Biomed Sci Instrum 1997;33:360-5 Co-activation of the hamstrings and quadriceps during the lunge exercise. Hefzy MS, al Khazim M, Harrison L

23 Stone, M. H., Johnson, R. L., & Carter, D. R. (1979). A short-term comparison of two different methods of resistance training on leg strength and power. Athletic Training, 14, 158-160.

24 Phys Ther 1995 Feb;75(2):133-44 Neuromuscular coordination of squat lifting, II: Individual differences. Scholz JP, McMillan AG

25 Lander, J.E., Hundley, J.R., and Simonton, R.L. The effectiveness of weight-belts during multiple repetitions of the squat exercise. Med Sci Sports Exercise. 24(5):603-609. 1992.

26 The Effectiveness of Weight-belts During the Squat Exercise. Lander, JE, Simonton, RL, and Giacobbe JKF. Med Sci Sports Exercise. 22(1):117-126. 1990.

27 Attila J. Zink, William C. Whiting, William J. Vincent, and McLaine, A.J. The effects of a weight belt on trunk and leg muscle activity and joint kinematics during the squat exercise. 1999. Journal of Str Con Res.

28 Influence of two different modes of resistance training in female subjects. Hisaeda H; Miyagawa K; Kuno S; Fukunaga T; Muraoka I

29 Lander, JE, Hundley, JR, and Simonton, Rl. The Effectiveness of weight-belts during multiple repetitions of the squat exercise. Med Sci Sports Exerc. 24(5): 603-609. 1992.

30 Force-velocity relationships and fatigability of strength and endurance-trained subjects. Kanehisa H; Ikegawa S; Fukunaga T
Choi, J. Y., Takahashi, H., Itai, Y., & Takamatsu, K. (1997).

31 Comparison of training effects between power-up type and bulk-up type in strength training. Medicine and Science in Sports and Exercise, 29(5), Supplement abstract 54.

32 Hellebrandt, F. A. (1972). The physiology of motor learning. In R. N. Singer (Ed.), Readings in motor learning (pp. 397-409). Philadelphia, PA: Lea & Febiger.

33 Christina, R. W. (1996). Major determinants of the transfer of training: Implications for enhancing sport performance. In K-W. Kim (Ed.), Human performance determinants in sport (pp. 25-52). Seoul, Korea: Korean Society of Sport Psychology.

34 Wilson, G. J., Newton, R. U., Murphy, A. J., & Humphries, B. J. (1994). The optimal training load for the development of dynamic athletic performance. Medicine and Science in Sports and Exercise, 25(11), 1279-1286.

35 Morrissey, M. C., Harman, E. A., & Johnson, M. J. (1995). Resistance training modes: Specificity and effectiveness. Medicine and Science in Sports and Exercise, 27, 648-660.

36 Kraemer, W. J., & Newton, R. U. (1994). Training for improved vertical jump. Sports Science Exchange, 7(6), 1-12.

37 A. S Prelepin. 1969. Preparation of elite Soviet Athletes. Technical Report #1012-62, Moscow: All-Union Research Institute of Physical Culture.
__________________

To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.


I can be found at
To view links or images in signatures your post count must be 10 or greater. You currently have 0 posts.
Reply With Quote