Go Back   Bodybuilding.net - Bodybuilding Forum > Main Forums > Articles > Training Articles
Register Community Today's Posts Search


Hey there!

It looks like you're enjoying our bodybuildng forum but haven't created an account yet. Why not take a minute to register for your own free account now? As a member you get free access to all of our bodybuilding forums and posts plus the ability to post your own messages, communicate directly with other members and much more. Register now!

Already a member? Login at the top of this page to stop seeing this message.

How To Bench Press



 
 
Article Tools Display Modes
Prev Previous Post   Next Post Next
How To Bench Press How To Bench Press
Darkhorse
08-31-2005
The Bench Press: Written by “Arioch”
http://www.midwestbarbell.com/articles/bench.htm

For more than three decades, the lift commonly viewed as the test of strength has been the bench press. From its inception in competition, it has been the most popular lift in single lift competition, and often, when someone who has no idea what powerlifting or Olympic lifting is all about, will pose the question “How much do you bench?” to anyone who lifts. It is the second lift in a powerlifting competition, and even athletes who are strong on the other two lifts need to develop proficiency in the bench press to achieve an exceptional total. While this lift is practiced by nearly everyone, even those who have no idea what a snatch, clean and jerk or squat is, this document is primarily written for powerlifters or those who wish to develop a maximal bench with minimal risk of injury.

The bench press is executed while lying flat on the back, the only contested lift where this occurs. The agonists (prime movers) in the bench are the triceps, deltoids, pectoralis major and minor, and the latissimus dorsai. Numerous smaller muscles are used to stabilize the body while lifting, but these are the primary focus. Performed properly, the bench can produce incredible muscular hypertrophy of the pressing muscles, although specific assistance work will still need to be performed to achieve maximal poundages.

The set up for the bench consists of lying flat on the bench, with the head, shoulders, and hips on the bench, and the feet flat on the floor. While some federations may allow variations of this, as a general rule it is good to practice this set up. Certain lifters may not be able to reach the floor, and may use plates or blocks to allow the athlete to achieve a respectable amount of leg drive. One of the most overlooked aspects of the bench is the amount of power that can be transferred from the legs to the torso, but this is only possible if the hips are driven strongly into the bench, and the abdominals and lower back are used to keep the torso stable. This is made easier for the athlete by arching, where the lower back is extended. This also serves to allow the lats to be recruited more efficiently by the athlete. The scapulae should be retracted to their fullest extent. This can not only shorten the bench stroke as well, but decrease the angle of rotation of the shoulder joint, limiting opening of the acromial process.

The grip will influence numerous factors; bar path, muscle recruitment and activation, bar placement, and risk of injury. As a general rule, most powerlifters will use a wide grip, shortening the distance the bar must travel and reducing the necessary work to lockout the weight.(10, 36) A narrow grip enables lifters to generate more force initially, but hinders force production at lockout. A wider grip has been shown to limit initial force production.(31) It is also worth noting that a wider grip generally allows far less horizontal bar displacement than a closer grip. Contrary to popular belief, a wider grip does not stress the pectorals more than a closer grip, although the triceps are recruited to a much greater degree with a narrower grip due to the greater vertical displacement of the bar.(10) While there is no greater recruitment of the pectorals secondary to a wider grip, the muscles will be subject to a greater stretch, which can result in increased force generation.(19) It goes without saying that the thumbs should be wrapped firmly around the bar, which will not only help ensure the safety of the lifter, but will make it easier to keep the wrists straight. Keeping the wrists straight allows the bar to be supported over the radius and ulna, instead of being held in position by the much smaller and weaker tendons of the wrist.

Unracking the bar is a part of the set up, and can result in a poor lift if it is not given the attention it deserves. Ideally, the bar should be taken out of the rack by the lifter, allowing the athlete to tighten the lats as the bar moves into position. However, since it is not an ideal world, a spotter is often used. If the is the case, the spotter should provide no more assistance than absolutely necessary, and a poor lift off can be worse than no help at all, especially in the case of smaller lifters, who can be pulled not only out of position, but clear of the bench by an overly enthusiastic ‘assistant’. When the bar is unracked, it should be taken at full extension, both because the athlete must demonstrate control of the bar for a successful lift in competition, but to ensure that the muscles are tight and the set up is correct. A single second of adjustment can avoid what seems like an eternal struggle to press a weight that is out of position.

Elbow position on both the descent and ascent will determine many things, including risk of injury to the shoulders, activation of the lats and triceps, as well as bar position. This is one of the most ignored factors when benching. It will be discussed in more detail during both the raising and lowering phases, but one thing will be mentioned first: do not flare the elbows out to the side “to place more emphasis on the chest,” as bodybuilding lore often states. This will result in a severe amount of strain at the shoulder joints, as it opens the acromial process to an extreme degree.

The descending phase is critical, and will directly determine the ability of the athlete to press the weight. When the bar is lowered, it should be brought low on the torso, to the apex of the arch. This serves to decrease the distance that the bar is pressed, reducing the work done by the athlete during both the eccentric and concentric phases. To enable the bar to be lowered properly, the elbows should move toward the lifter as the bar comes down. This should be done with a feeling of ‘rowing the bar down’ with the lats, but achieving the feel of this can take time. Tension should be maintained throughout the body as this is occurring, to preserve the potential energy of the stretch reflex.(7)

The pause is required in competition, and while this is one of the many things that separates a competition bench from a gym lift, it is often one of the most important. The ability to preserve a stretch reflex is crucial to any athlete who needs to hit a big number in competition. When the bar is paused, the most important thing to do is not relax, tension must be maintained throughout the entire body. The stretch reflex can be maintained for up to two seconds in a trained athlete, although a novice will struggle to achieve 25% of this result.(7)

The concentric portion of the lift is the most difficult, and can present a variety of problems to the athlete. One fact that should be noted is that, once the bar is paused, the lifter should not allow the bar to sink further, using the ribcage or stomach to propel the bar upward. This is heaving, and is cause for a lift to be turned down. As the bar begins to ascend, it should be driven upward with as much force as possible, both to take advantage of the myotactic response, as well as to push through any possible sticking point.(13, 30) The elbows should be maintained as close to the body as possible until the sticking point is reached, at which point they should flare outward, reducing the movement arm about the elbow and improving the leverage of the triceps.

The bar should be driven upward in as straight a line as possible. Quite simply, this requires the least amount of work on the part of the athlete. Some lifters are taught to push the bar back (‘back to the rack’) and this is quite incorrect, even though several good benchers do so. Benching in this manner increases the amount of work that the lifter must perform, and decreases the involvement of the lats. Some coaches and athletes are under the impression that this will more fully utilize the musculature of the upper back, but this is not the case. It would be if the athlete were vertical instead of horizontal, however, as the bar is simply drifting over the face, the athlete is in no way utilizing muscular force to pull it there.

Common errors that occur when benching are discussed briefly. They all have several things in common. First, they all indicate that the lifter is not strong enough to move the weight properly, and should decrease the poundage until their ability grows to match his desires. Second, they all indicate that the lifter needs further education in the realm of strength training. Third, they all have the potential to cause injury.

Excessive arching is common among gym lifters, who should know to keep their hips on the bench. However, when the ego takes over, the body often loses control. The lifter will push the hips up off of the bench, in order to improve his leverage. While this can help someone lock out a lift they would otherwise have missed, it can caused a great deal of strain on the vertebrae of the lower back and the neck. The lumbar vertebrae will be compressed unevenly, increasing the shearing force the spine is subject to, and putting the lifter at risk for serious injury. An even more extreme form of arching can have the lifter actually compressing the vertebrae of the neck.

Bouncing the bar off of the chest is another common technique exhibited by those who seek to impress their friends with the fact that they have survived as long as they have. This is, quite simply, an easy way to damage the ribs, sternum, or even completely fracture the xiphoid process. In addition to the potential for injury, people who utilize this ‘technique’ will begin to develop a weakness in the bottom of the bench press, necessitating further bouncing of the bar, which is quite a viscous circle.

One last error will be discussed, and that is the improper use of spotters. While a spotter is a good idea when benching, using one (or more) to perform the lift instead of pressing the weight to full extension is not a habit that the serious strength athlete should develop. While there may be a place for heavy negatives in the recreational athletes program, there is a disadvantage to performing them as well, in that they cause the greatest degree of microtrauma to muscle fibers than any other standard type of training. While a muscle may be able to handle approximately 120% of its maximal concentric load during the eccentric phase, this does not in any way serve to optimize the CNS, and it is, in fact, more fatiguing to the athlete than standard training, increasing the recovery time and lessening the amount of training time. (29, 41, 60, 61)

There is at least one school of thought which would have athletes believe that there is little benefit to performing a regular bench press, and that machine type bench exercises are just as good, if not superior to the bench press. Unfortunately, research does not support this. Studies have shown that not only is there greater muscle activity during the bench press (20, 31, 33) but that there is also greater recruitment of the stabilizing muscles to support the musculature used in the bench press (16, 17, 45) This is particularly true of the deltoid, and while all muscles of the deltoid are active to one degree or another during any movement of the upper arm, with one head being the agonist and the others synergists,(40) this difference is highly significant with respect to the bench press.(33)

Lifters, whether powerlifters, bodybuilders, or recreational lifters often argue about which muscles are most involved in the bench. Unfortunately, there is no clear cut answer. The following information is compiled from electromyographical analysis (EMG) performed within several studies, and in every case the EMG signal was quantified by calculating the integral of the EMG pattern (IMEG) as the area under the linear envelope.(60) The data were analyzed through a repeated measures ANOVA (analysis of normal variance) using type III sums of squares where possible.(1) This method of review was also used when assessing % maximal voluntary isometric contraction (MVIC). All anatomical references were reviewed with respect to electrode placement with respect to both anatomical accuracy as well as sensitivity as diagnostic tools (9, 12, 19, 24, 25, 37, 39, 42, 43, 61)

What the above paragraph indicates is that, when all factors are considered and standardized, including individual variations such as biomechanics, fiber type, rate of force development, etc. the following can be surmised (all data based on averages of 60% and 80% 1rm):
% MVIC of agonists:
Triceps: 110%
Anterior deltoid: 95%
Pectoralis Major: 75%

The most active portion of the triceps was the long head, which is even more active with a narrow grip. This is true even when overhead pressing, assuming the elbows are fully adducted. This is secondary to the greater degree of elbow flexion, in which the triceps brachii functions as the agonist.

The anterior deltoid will be more active the more the trunk is inclined, as well as being more active with a wider grip. This is due to the fact that the anterior deltoid is not merely an flexor of the humerus, but also an adductor of it. Wide hand spacing during a vertical press will cause mainly glenohumeral abduction, whereas with a narrow grip the primary movement is flexion.

The sternocostal head of the pectoralis major is little affected by hand spacing, but is directly affected by trunk inclination. The greater the inclination, the less the activation. There is also a slightly greater activation of this muscle with a wider hand spacing, due, in general, to the fact that with a wider grip, the elbows tend to move away from the midline of the body, which increases the degree of horizontal flexion of the humerus.

The clavicular head of the pectoralis major is affected by both hand spacing as well as trunk inclination. The narrower the grip, the greater the activation, as well as the greater the inclination, the greater the activation. There are several factors for this, including the fact that vertical bar displacement is greatest during an incline press. This is also due to the fact that the clavicular head is involved in horizontal flexion and adduction in addition to pure flexion. The clavicular head will maintain its function as a flexor of the glenohumeral joint until humerus moves above the horizontal position. This is why it is rather inactive when the torso is vertical, as little flexion is occurring.

The latissimus dorsai is highly active at the initiation of the concentric phase, with greater activity the closer the elbows are maintained to the torso, due to the degree of adduction required. The latissimus dorsai is an extensor at the glenohumeral joint as well as being a humeral adductor, which explains its activity during every type of pressing.

Cont...  
 

  Bodybuilding.net - Bodybuilding Forum > Main Forums > Articles > Training Articles


Currently Active Users Viewing This Article: 1 (0 members and 1 guests)
 



 



All times are GMT -8. The time now is 02:17 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.